If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+1x-6x-12=0
We add all the numbers together, and all the variables
3x^2-5x-12=0
a = 3; b = -5; c = -12;
Δ = b2-4ac
Δ = -52-4·3·(-12)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-13}{2*3}=\frac{-8}{6} =-1+1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+13}{2*3}=\frac{18}{6} =3 $
| 5^2b-14b-49=0 | | 2/3+1/(4x)=2 | | 14.4=12x | | 15^2-14b-49=0 | | 10/225=x/441 | | X/2+x/3=90 | | 225/10=441/x | | 2x+6=–4x | | Z=3+2z | | 56/7=32-h | | 10z+(-3)=4z+63 | | 7/11=v/13 | | |x-5|=12 | | -2x+6-4x=7 | | 33+(2t-50)+(2t-11)=180 | | 3n+13=27 | | -3y-9=-9+48 | | 2/3x+1/6=-3/4x | | 9-(3y-4)=2-4y | | 4h-5h+9=6 | | -4(x+7)-8=32 | | 62=2x+7x-1 | | 36+(p-9)+2p=180 | | -.33(3x-9)=4 | | (2s-10)+(2s-11)+(2s-9)=180 | | (k+2)/4=8 | | 9+4m=-1-2m | | 7x^2+3=24 | | 11/13=u/8 | | 6x-10=75+65 | | k^2+8k-70=0 | | 9+4m=1-2m |